
Precision medicine has the potential to profoundly improve the practice of medicine. However, the advances required will 
take time to implement. Genetics is already being used to direct clinical decision-making and its contribution is likely 
to increase. To accelerate these advances, fundamental changes are needed in the infrastructure and mechanisms for 
data collection, storage and sharing. This will create a continuously learning health-care system with seamless cycling 
between clinical care and research. Patients must be educated about the benefits of sharing data. The building blocks for 
such a system are already forming and they will accelerate the adoption of precision medicine.

The practice of medicine is an inexact science. The clinician 
assesses the patient’s symptoms and decides which tests to per-
form to gather more data. They must determine the cause of 

the symptoms and the patient’s prognosis, whether clinical interven-
tion is warranted and, if so, which intervention to prescribe. To do this 
effectively, the clinician might need to assess several potential courses 
of action and incorporate all that is known about the patient into his or 
her decision. Human physiology is complex. In some cases, the cause 
of the patient’s symptoms cannot be ascertained. In other cases, clini-
cians cannot gather enough data to make a fully informed decision. The 
guesswork inherent in the practice of medicine reduces the efficacy of 
the interventions that are prescribed.

Genetics is an important contributor to this complexity. Distinct 
genetic variants cause conditions that respond to different treatments 
yet share a similar set of symptoms. Without a mechanism to determine 
the underlying genetic cause of a set of symptoms, it might not be pos-
sible to determine which treatment will be most effective a priori. For 
instance, although there are many causes of lung cancer, only people 
who have an alteration in the gene EGFR respond to treatment with 
tyrosine kinase inhibitors1,2. Similarly, many genetic lesions lead to a 
thickened heart and an increased risk of sudden cardiac death, but only 
people with mutations in the gene GLA respond to enzyme replace-
ment therapy3. Even when the cause of a condition is known, unrelated 
genetic variants can affect treatment efficacy by altering the way in 
which drugs are metabolized or by increasing the likelihood of adverse 
events. For example, patients who are treated with conventional doses 
of the immunosuppressive drug azathioprine for an extended period are 
at risk of developing life-threatening myelosuppression if they harbour 
genetic variants that prevent the drug from being properly metabolized4. 
And approximately 6% of European populations carry HLA-B alleles 
that predispose them to potentially life-threatening hypersensitivity 
reactions if they are treated with the antiretroviral drug abacavir5.

Understanding the patient’s genetic make-up is crucial for providing 
optimal care for many diseases. Clinicians now have access to an increas-
ing array of tests that allow them to determine which genetic variants 
exist in their patients. These include: genotyping tests that look at vari-
ants in a patient’s DNA sequence that are known to associate strongly 
with important clinical effects; panel-based gene sequencing, which 
looks at many genes related to a specific indication to detect known and 
new variants; sequencing of the exome — all known protein-coding 

genes; and whole-genome analysis that attempts to sequence a patient’s 
genome. However, simply determining which variants are present is 
insufficient. The implications of these variants must also be determined 
for each clinical indication. This genetic understanding must then be 
considered in conjunction with other clinical data to decide the path 
that will produce the best results for the patient.

The precision-medicine ecosystem
The goal of precision medicine is to enable clinicians to quickly, effi-
ciently and accurately predict the most appropriate course of action 
for a patient. To achieve this, clinicians are given tools — in the form 
of tests and information-technology support — that are both compat-
ible with their clinical workflow and economically feasible to deploy 
in the modern health-care environment. These tools help to simplify 
the process of managing the extreme biological complexity that under-
lies human disease. To support the creation and refinement of these 
tools, a precision-medicine ‘ecosystem’ is developing. This ecosystem 
is beginning to link clinicians, laboratories, research enterprises and 
clinical-information-system developers together in new ways. There 
is increasing hope that these efforts will create the foundation of a con-
tinuously learning health-care system that is capable of fundamentally 
accelerating the advance of precision-medicine techniques.

Interpretation is key to the precision-medicine ecosystem. It occurs 
at several levels. Individual variants can be interpreted in relation to 
specific indications. Sets of variants can be assessed in relation to their 
collective impact on patients. Genetic and clinical data can be com-
bined to determine the best course of action for a patient. The quality 
of these interpretations is highly dependent on the data on which they 
are based. For this reason, research and clinical databases provide the 
foundation for precision medicine. Continuous learning in health care 
is in many ways driven by improvements to the content and structure 
of these resources. For example, the highly collaborative Clinical and 
Functional Translation of CFTR (CFTR2) project brought together 
researchers from around the world to share extensive patient data on 
CFTR variants to distinguish between pathogenic and benign lesions. 
This work is leading to more effective treatments for patients with cystic 
fibrosis6. Similarly, the Evidence-based Network for the Interpretation 
of Germline Mutant Alleles (ENIGMA) consortium has engaged a 
large collaborative network to share data on the BRCA1 and BRCA2 
genes that predispose patients to breast and ovarian cancer7. Patients 
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with pathogenic variants in these genes can now take preventive action 
through monitoring and prophylactic surgical procedures8 and those 
with active breast cancer are candidates for targeted treatments9,10. 
In addition, large collaborative programmes led by the US National 
Institutes of Health (NIH)-supported Clinical Genome (ClinGen) 
Resource11 and the Global Alliance for Genomics and Health have 
begun to tackle the development of reliable resources for systemati-
cally defining the pathogenicity of all human variation through broad 
and targeted efforts.

When optimized, the infrastructure that supports the precision-
medicine ecosystem efficiently manages and integrates the flow of 
material, knowledge and data needed to generate, validate, store, refine 
and apply clinical interpretations (Fig. 1). Biobanks link samples with 
patient data to support discovery. Research databases record the data, 
calculations and results that provide evidence for clinical interpreta-
tions. Clinical-knowledge-sharing networks enable the refinement of 
interpretations. Clinical laboratories and their information systems 
facilitate the consolidation of interpretations into reports and alerts. 
Electronic health records (EHRs) and associated systems help clini-
cians to apply results, both when they are received and as the patient’s 
condition and knowledge of the variants evolve. Patient-facing infra-
structure or ‘portals’ provide individuals with access to their genetic 
data and — if appropriate — the ability to decide how they should be 
used, including whether to participate in research. At present, much 
of this infrastructure is at a very early stage of development. However, 
the infrastructural foundation for precision medicine is beginning to 
emerge. In this Review, we explore its crucial components.

The patient viewpoint
The role of the patient in supporting precision medicine is becoming 
increasingly important. Patients are obtaining a growing number of 
genetic results in the course of their care. Typically, clinicians involved 
in their treatment order such tests for them. However, patients are also 
now able to access direct-to-consumer testing, sometimes through the 
help of someone who is not directly involved in their care. To ensure 
that precision medicine is tailored to the unique genetic make-up of 
each patient, we must gather as much information as possible from indi-
vidual patients. Yet there are risks associated with widespread sharing 
of patient data. To gain access to these data, researchers must actively 
engage patients, teach them about the benefits of data sharing and help 
them to weigh up the risks and benefits. This can be done by making 
the process of obtaining consent more effective.

There are two major forms of consent that are relevant: consent for 
receiving medical treatment or procedures; and consent for releas-
ing data or samples for use in research.  In both cases, the risks and 
benefits must be conveyed to the patient. However, the conventional 
distinction is that obtaining consent for treatment focuses on benefits 
to the individual whereas obtaining consent for research focuses on 
generalizable knowledge12. Increasingly, the line between clinical care 
and research is blurring; participation in research studies can lead to a 
direct improvement in outcome for the patient13,14, and the continuous 
capture of clinical-care data has been proved an effective way to inform 
generalizable knowledge15. As a result, efforts are under way to ask all 
patients who enter the clinical-care setting to sign a form that permits 
their data to be used in research16–19. In addition, those signing clini-
cal genetic-testing consent forms now commonly agree to share their 
data broadly to help advance knowledge11. Nevertheless, there is still a 
need for more uniform consenting processes. It is difficult to generate 
consent forms in language that is both easy to understand and robustly 
conveys the main issues associated with genetic testing. Sharing such 
language across institutions could be helpful in this context. Harmoniz-
ing consent language across providers, laboratories and biobanks would 
make it easier to administer and adhere to those agreements. Recently, 
the Regulatory and Ethics Working Group of the Global Alliance for 
Genomics and Health published a framework for the responsible shar-
ing of genomic and health-related data20. The group has also created 

consent tools and policies to aid the development of standardized 
approaches to obtaining consent and that support data sharing in the 
global community. Consistent with the Global Alliance for Genomics 
and Health framework, ClinGen has developed standardized consent-
ing approaches (http://clinicalgenome.org/data-sharing/) for use in the 
clinical-care setting, which will enable sharing of genetic-test results 
and accompanying phenotypic data in the absence of research-study 
enrolment.

Some patients are extremely interested in supporting research and 
are willing to take proactive steps to facilitate the sharing of genetic 
information. The Global Network of Personal Genome Projects recruits 
volunteers who are prepared to share their genomic data and medical 
histories publicly. ClinGen manages the GenomeConnect patient por-
tal, built on the Patient Crossroads platform, which allows individu-
als to share health and genetic information to form communities. The 
Platform for Engaging Everyone Responsibly (PEER), supported by 
the Genetic Alliance, enables individuals to control sharing, privacy 
and access preferences for their health and genomic data with a high 
degree of precision.

The clinician viewpoint
Clinicians gain access to patients’ genetic information through tests. 
Tests have two components: a technical component that focuses on 
identifying which variants are present in the patient; and an interpretive 
component in which the implications of identified variants are assessed. 
In most scenarios, genetic testing is performed to determine either 
the cause of a specific indication or the most appropriate treatment21. 
However, exome and genome data can be reused to perform multiple 

Figure 1 | The precision-medicine ecosystem. The precision-medicine 
ecosystem contains building blocks that optimally connect patients, clinicians, 
researchers and clinical laboratories to one another. Patients and clinicians 
access information through portals or EHRs. The ecosystem can include 
displays or CDS augmented by curated knowledge that is supplied and shared 
by multiple stakeholders. Case-level databases and biobanks receive case data 
and samples from clinical and research workflows. Researchers benefit from 
all of these information sources and also contribute to knowledge sources. 
Clinical laboratories leverage data and inform the clinical community as they 
assess genomic variation and its impact on human health.
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assessments over time. This opens up the possibility of obtaining and 
storing genome and exome sequences before disease manifests, with the 
intention that they will be interpreted and reinterpreted as indications 
arise. Irrespective of when the sequence is obtained, the interpretation 
step is crucial.

Clinical interpretation is a multiple-component process (Fig. 2). After 
a pool of variants have been identified, step 1 determines which of those 
variants should be assessed further. In step 2, the clinical impact of each 
of those variants is assessed. In step 3, the relevance of the combination 
of variants identified in step 2 are considered in relation to the patient’s 
indication. Finally, in step 4, the test results are placed within the context 
of all known information about the patient to determine clinical care. 
Many laboratories base their reports on steps 1–3, although some simply 
report the variants they have identified. The patient’s clinician often 
reviews the laboratory analysis and completes any remaining steps. 
These processes can be time consuming and therefore expensive. They 
also involve a considerable amount of professional judgement, which 
makes them subject to human error and differences of opinion. The 
quality and efficiency of these processes is highly dependent on the 
data available in clinical and research databases. For this reason, these 
databases are in many ways the core of the ecosystem that is needed to 
advance the practice of precision medicine. In addition, more standard-
ized ways to evaluate evidence, such as those released by the American 
College of Medical Genetics and Genomics22, will be crucial for inter-
preting human genetic variation in a more consistent way. Finally, the 
open sharing of clinical interpretations to distribute the labour of variant 
assessment, to identify and resolve differences in interpretation, and to 
catalogue variation for research studies is essential for improving the 
care of patients with genetic-based conditions11.

In each patient encounter, clinicians must address several questions 
that relate to precision medicine. First, they must assess whether genet-
ics could be relevant — and if so, order the appropriate tests. Once the 
test results are received, the clinician must determine how to apply them. 
Then they must manage the results over time. Information-technology 

support is needed to manage the large amount of patient data and other 
information that are required to execute these processes optimally. 
EHRs and their associated systems are the main means of providing 
such support to clinicians.

Electronic health records
EHRs are well positioned to be the apex of genetic information-tech-
nology support. They should serve as the clinician’s gateway to all of the 
patient’s information, including any genetic data. Information should 
be organized and displayed in a way that integrates with the clinician’s 
workflow and facilitates diagnostic and treatment decisions. EHR and 
related systems can also provide clinicians with electronic clinical-deci-
sion support (CDS) that provides extra information about a genetic test 
or result through an e-resource or InfoButton23,24 that links to electronic 
resources such as websites or databases. They can also issue pre-test 
and post-test pharmacogenomic warnings that highlight potentially 
adverse interactions between drugs and specific genetic variants. Pre-
test warnings are triggered when a clinician takes an action that should 
be informed by a genetic assessment but there is no record of the assess-
ment being performed. Post-test alerts are triggered when an action 
is taken that may be contraindicated by a patient’s genetic profile. An 
example is ordering a high dose of azathioprine for a patient with a 
thiopurine methyltransferase deficiency4. CDS systems can also alert 
clinicians when important information emerges on a patient’s previously 
reported variant25. In the future, CDS systems might be able to guide 
clinicians through complex scenarios that take into account multiple 
types of patient data, including genetics. Evolving such CDS is essential 
for the formation of a learning health-care system.

Genetic information and CDS do not necessarily have to be imple-
mented directly into the EHR — it is possible to integrate EHRs with 
external systems25,26. Such integration can be seamless so that clinicians 
need never know that they are working with multiple systems. Provid-
ing genetic support through the EHR is complex27 and it is currently 
unclear how much genetic functionality EHR vendors will build into 
their systems. Some have indicated that they are unlikely to store full 
genomic sequencing in the EHR, instead choosing to link to external 
genomic data stores and focus their internal functionality on managing 
test results that have been interpreted at a higher level. Irrespective of 
whether patient genetic profiles are stored in the EHR, a constellation 
of systems will need to be tightly integrated with the EHR to provide 
optimal support to clinicians.

Displays of genetic information and CDS are often impossible to pro-
vide without robust access to the patient’s genetic results and reports. 
The EHR and related clinician-facing systems must obtain genetic 
results from laboratory systems. This requires interfaces between 
the EHR provider and the laboratory. Creating these interfaces often 
involves establishing electronic connections that span multiple organi-
zations and integrate systems from competing vendors. Relatively few 
such interfaces exist, largely because of the expense associated with cre-
ating them. Generally, results are transmitted from the laboratory to the 
provider by fax, which makes it difficult to keep the results organized 
in the EHR. CDS usually relies on access to structured electronic data 
that cannot be reliably extracted from a fax. Even if a genetic result is 
recorded in a structured format, this structure is often lost when the 
result is transferred to clinicians involved in the patient’s care who oper-
ate out of different institutions. Any results from direct-to-consumer 
testing are also unlikely to be transferred in a structured format.

Several groups are working to promote interconnectivity that would 
enable CDS systems that incorporate genetic information. The Insti-
tute of Medicine Roundtable on Translating Genomic-Based Research 
for Health established the Displaying and Integrating Genetics Infor-
mation Through the EHR Action Collaborative (DIGITizE AC). 
DIGITizE AC brings together clinicians, laboratories, vendors, stand-
ards organizations, government agencies and patient representatives 
to increase support for genetics in the EHR. The group has defined 
a set of genetics-based CDS rules that it seeks to roll out widely. This 

Figure 2 | Stages of the genetic interpretation process. Once genetic variants 
have been identified, they are filtered to select those of interest (step 1). Next, 
the evidence for each variant is assessed to determine the variant’s clinical 
impact (step 2). One or more assessed variants are then interpreted with 
respect to the specific condition for which the patient is being investigated 
(step 3). Last, the overall genetic assessment is placed into the patient’s clinical 
and personal context to inform the clinical-care decision-making process 
(step 4).
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will involve leveraging the frameworks of standards bodies, such as 
Health Level Seven (HL7) International, and the Logical Observation 
Identifiers Names and Codes (LOINC) database, as well as ontology 
and rule creators such as the Clinical Pharmacogenomics Implemen-
tation Consortium (CPIC). The National Human Genome Research 
Institute (NHGRI) has also established several consortia with EHR 
working groups to investigate how genetics can be supported in the 
EHR. These include: the Electronic Medical Records and Genomics 
(eMERGE) Network28, Clinical Sequencing Exploratory Research 
(CSER) and ClinGen11.

However, the problem that these organizations are trying to solve 
is very difficult. Standardized message formats and ontologies are the 
best way to reduce the cost of establishing the laboratory–provider and 
provider–provider interfaces needed to underlie precision medicine. 
However, these standards are helpful only if they robustly account for 
the different real-world scenarios they are intended to support and are 
broadly implemented by the vendor community (Fig. 3). Developing 
such standards requires an enormous amount of input from groups that 
combine deep clinical, laboratory, vendor and information-technology 
expertise. The DIGITizE AC has found that even defining the specific 
requirements for its initial set of narrow-use cases entailed a consider-
able amount of interdisciplinary effort. Much more work is needed to 
build truly robust, general-purpose standards.

The clinical laboratory viewpoint
Clinical laboratories sit at the core of the interpretative process. Ideally, 
they provide both the evidence for individual variants as well as a case-
level report that places all potentially relevant variants in the context of 
the patient’s presentation. Laboratories that perform genome sequenc-
ing often discover variants that they have never seen before, which must 
then be assessed. Similarly, variants that have been seen before might 
need to be reassessed as new knowledge emerges. Variant assessment  
is becoming an important factor in the cost of genetic tests. It must be 
performed by skilled individuals because errors could result in inap-
propriate patient care. Yet we know that variants can be interpreted 
differently. As of 11 September 2015, 369 organizations had submitted 
a total of 158,668 variants to ClinVar, a National Center for Biotechnol-
ogy Information (NCBI) database that acts as a single centralized public 
repository to which institutions can submit their interpreted variants 
as well as retrieve data from others29. At least 2,000 of these have been 
interpreted differently by submitters11.

Laboratories and clinicians can be assisted in two ways: better access 
to variant assessments performed by other institutions using consistent 
approaches, and tools to improve and standardize the variant assess-
ment process.

Building clinical genomic knowledge
Sharing variant- and gene-level assessments between laboratories and 
clinicians can increase the quality and efficiency of the variant assess-
ment process. Multiple efforts are under way to increase the sharing of 
such knowledge30–34. The ClinGen programme is building an authori-
tative central resource that defines the clinical relevance of genomic 
variants for use in precision medicine and research. The programme 
aims are to increase the rate of submission to ClinVar and to improve 
the content of ClinVar and other genomic resources through expert 
curation. ClinGen has worked together with ClinVar to create a ‘star 
system’ that defines the level of review for each variant that is submitted 
to ClinVar11. ClinGen working groups have been established in multiple 
clinical domains to curate gene–disease relationships and to interpret 
variants through expert consensus.

Centralized knowledge repositories can also be created by linking 
together the infrastructure that supports different laboratories. For 
example, laboratories that use the GeneInsight Lab application35 are 
able to use the system to communicate and share knowledge in real 
time. This functionality has been used to create a network called Vari-
antWire and also supports the Canadian Open Genetics Repository 

(COGR)36 network of Canadian labs. Importantly, an organization can 
both participate in a knowledge-sharing network and contribute their 
data to ClinVar. By adopting a standardized infrastructure that helps 
to structure data for submission to ClinVar, public sharing becomes 
cheaper, more efficient and more comprehensive with respect to sup-
plying the supporting evidence.

Case repositories and biobanks
An important driver of improvements to variant assessment processes 
is the collection and analysis of case data. Clinical and research labora-
tories often develop case repositories. The power of these repositories is 
a function of the number of cases that they contain. Therefore sharing 
cases across institutions is beneficial. However, it is difficult to combine 
data that have been stored in information systems developed by dif-
ferent groups. Trade-offs must be made when deciding what data to 
capture and how deeply to standardize and structure them. The amount 
of data in a case repository can be increased by allowing contributors 
to deposit heterogeneous data that are incomplete or inconsistently 
validated and may therefore be difficult to process downstream37. If 
repository developers insist on the submission of complete, validated 
and consistent data, many cases will have to be excluded.

Several databases have been launched that share case-level data across 
broad disease areas. The NCBI’s database of Genotypes and Phenotypes 
(dbGaP)38 places minimal restrictions on the types of case data that can 
be submitted and therefore serves as a generalized repository. However, 
because phenotypic data are often limited, making informative use of 
the information is difficult. Similarly, the European Bioinformatics 
Institute (EBI) maintains the European Genome-phenome Archive 
for storing case-level genomic data. The International Cancer Genome 
Consortium (ICGC)39 and The Cancer Genome Atlas (TCGA)40 have 
each set up large repositories of somatic cancer sequencing data. The 
American Society of Clinical Oncology (ASCO) is looking to incor-
porate the tracking of patient outcomes to enable a learning health-
care system in its CancerLinQ platform41. Repositories have also been 
developed through direct patient participation and span non-profit, 
academic and commercial activities.

Access to clinical specimens associated with patient data is often 

Figure 3 | Creating and implementing robust standards for the description 
and structuring of data in laboratory processing and patient-care systems. 
Professionals with diverse expertise interact with vendors of laboratory-
information systems and EHR systems to iteratively design and implement 
standards that effectively enable techniques to be used in the clinic.
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necessary to fully inform discovery and continuous learning. The costs 
associated with collecting samples prospectively for research studies 
are enormous. However, when samples are collected in bulk and then 
placed into biobanks, which allows their reuse across studies, the costs 
decrease considerably. One of the keys to success is ensuring that strong 
consent processes are in place. Biobanks are moving from reposito-
ries of de-identified, unconsented specimens towards fully consented 
models that allow association with longitudinal health records. This is 
another area in which universal consent language would simplify the 
infrastructure development process. Direct engagement of patients in 
this type of sharing can help participants to balance the risks and ben-
efits. Patients must fully understand the scope of their consent and be 
actively informed and engaged as participants in the advancement of 
knowledge. The return to patients of clinically relevant results from 
research studies should also be supported because this allows patients 
to benefit directly from their data sharing.

In addition to supporting individual case-level repositories and 
biobanks, efforts are being made to connect divergent databases. 
Launched in 2015, the Matchmaker Exchange is a centralized network 
for sharing case-level data within an international set of case-level 
repositories focused on gene discovery42. Although each database has 
its own data schema, the development of a common application pro-
gramming interface43 means that users can query genomic and pheno-
typic data across multiple systems. This has encouraged the member 
databases to move towards implementing a common set of fields to 
facilitate effective data exchange for gene discovery.

There is no doubt that other such efforts will emerge, particularly as 
the Genomics England and Precision Medicine Initiative programmes 
develop. Furthermore, the data-standardization efforts that help to 
establish interfaces between laboratories and providers could assist 
the development of these case repositories. Organizations that supply 
patient data to these efforts must develop mechanisms for collecting 
data more uniformly and for sharing them consistently. By enabling 
patients to contribute their data directly, the collection of phenotype 
data can be accelerated and broadened44.

Knowledge resources and tools
In addition to clinical-knowledge and case-sharing networks, many 
laboratories and clinicians use research-grade knowledge resources and 
tools. Many types of tools and resources are used daily in the clinical 

workflow, even if they are not intended for direct clinical usage. In sil-
ico assessment tools use computational algorithms to assess the likely 
effects of DNA variation45–47. Genome browsers can display multiple 
tracks of information, including species conservation data, the location 
of gene transcripts and regulatory elements, and population genetic 
variation. A number of allele-frequency databases, such as dbSNP 
Short Genetic Variations, the National Heart, Lung, and Blood Insti-
tute (NHLBI) Grand Opportunity Exome Sequencing Project’s Exome 
Variant Server, the Exome Aggregation Consortium (ExAC) Browser 
and the 1000 Genomes Project48, provide data that are used by clini-
cal laboratories to define variation that is unlikely to cause Mendelian 
disorders. The NCBI’s PubMed database provides access to published 
biomedical literature, and public and commercialized efforts exist to 
curate and present the data contained in such literature in a more useful 
format, such as Online Mendelian Inheritance in Man (OMIM) and The 
Human Gene Mutation Database49. To define the role of these knowl-
edge resources,  users must assess which resources are useful, how their 
quality is controlled and how best they can be integrated into clinical 
workflows50. ClinGen maintains a list (http://clinicalgenome.org/tools/
web-resources/) of web-based tools that members of its community 
have found useful. This resource has also been designed to serve as an 
e-resource that can be accessed through EHRs.

The researcher viewpoint
The advent of precision medicine and its supporting infrastructure 
has given researchers the ability to influence clinical care directly. The 
release of innovative research tools and the addition of new informa-
tion in the form of knowledge bases can immediately influence patient 
care by changing how genomic variants are assessed. Although data 
obtained through clinical settings typically require processing in specific 
ways, those obtained from research tend to be more flexible. This means 
that researchers can often tolerate more variability and inconsistency in 
their data sources than clinicians. For this reason, new infrastructure 
is usually released to the research community before it is optimized for 
clinical use.

Clinical knowledge-sharing infrastructure and case repositories, 
especially when combined with EHR-derived content, can provide cli-
nicians and clinical laboratories not only with unprecedented access to 
clinical data, but also make this information accessible to researchers. 
New models are emerging for the broad sharing of data for discov-
ery purposes. For example, the crowd-sourced approach to solving 
complex biological problems taken by the DREAM Challenges is now 
being applied to clinical-trial data in the hope of advancing precision 
medicine51,52. Such challenges pair the brightest computer scientists with 
unprecedented open access to data to allow the development of highly 
informative models for predicting patient outcomes. To support this 
era of open data and discovery, it is crucial that appropriate consent 
approaches are established to allow clinical data to be used in these 
ways. Opportunities for discovery are also being created as the cost of 
sequencing falls and the processing capabilities of ‘big data’ become 
increasingly accessible53. All these factors could contribute further to the 
formation of a continuously learning health-care system that simultane-
ously engages clinical-care providers and researchers and is necessary 
to support the development of precision medicine.

Realizing continuously learning health care
Ideally, continuous learning in health care would involve the capture 
of all incremental data, knowledge and experience gained through 
each patient interaction. This information would then be used in real 
time to improve the care of current and future patients. The ability to 
stratify patients, understand scenarios and optimize decision-making 
would consistently improve based on the myriad data obtained dur-
ing the care-delivery process. This would be the ultimate expression 
of precision medicine. The infrastructure we discuss in this Review 
represents initial steps in this direction. We have already seen evidence 
to show that continuous-learning processes are achievable. Figure 4 

Figure 4 | Example of a learning health-care system. Case data can be 
shared between laboratories to support variant assessment. In this example, 
the BRCA2 p.Glu1593Asp variant in case D is classified initially as being of 
‘uncertain significance’. After accessing genetic and phenotypic patient data 
from cases A, B and C, in which there are other genetic explanations for the 
clinical phenotype, the necessary evidence becomes available to classify the 
BRCA2 p.Glu1593Asp variant as ‘likely benign’.
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depicts an example of a continuous-learning system in which hypo-
thetical historical patient data from breast-cancer testing are accessed 
to determine the pathogenicity of a new BRCA1 variant as ‘likely benign’. 
The variant would otherwise be considered of ‘uncertain significance’. 
Clinical laboratories often classify variants on the basis of historical 
clinical case histories. Because each laboratory has access to only a frac-
tion of patients tested, optimal learning can only happen when data are 
shared broadly between organizations. ClinGen has made advances in 
clinical-laboratory genetic-data sharing through the use of the ClinVar 
database11. However, this level of sharing is more likely to lead to thera-
peutic development and improved outcomes if the results of genetic 
testing are accompanied by greater amounts of patient health data. This 
will require the emerging genetic infrastructure to be extended, such 
that it can integrate with as many other forms of patient data as possible.

Addressing barriers to precision medicine
Multiple issues must be overcome for personalized medicine to reach 
its potential, as summarized by Joyner and Paneth in seven key ques-
tions54. Although some doubt has been expressed that personalized 
medicine will reach its full potential for common diseases, the recent 
shift in emphasis to studies of the genetic basis of rare diseases and 
somatic cancer could provide tangible success in this field. For exam-
ple, mechanistic understanding of rare disease and cancer pathways 
might inform the understanding of common diseases and approaches to 
reducing risk more effectively than has been achieved through genome-
wide association studies. However, to ensure that we can learn from our 
evolving experience in the diagnosis and treatment of all types of dis-
ease, continuously learning health-care systems and broad data-sharing 
approaches must be supported. The absence of such systems is likely 
to be responsible for the limited success of personalized medicine to 
date. The continuous-learning infrastructure could be used to add a 
testing methodology for new hypotheses, in which real-time evalua-
tion is repeatedly conducted against a limited set of treatment decisions 
for a given condition to determine which treatments provide the best 
results for different patient subgroups. Improved decision-making — 
at present, based on access to more up-to-date knowledge, and in the 
future, based on real-time evaluation techniques — has the potential 
to partially offset cost concerns by reducing expenditures associated 
with unnecessary or ineffective care. These improvements are also likely 
to generate public-health benefits. Improved infrastructure to capture 
both test results and patient outcomes should enable the measurement 
of such benefits.

The type and quality of patient data stored in EHRs are clearly issues 
that need to be addressed to support a continuously learning health-care 
system. In our experience, the investment required to capture higher-
quality and more clinically relevant data is made only when a near-term 
financial return on those investments can be established. An improved 
foundational infrastructure provides an expanded basis for innovation 
and thereby facilitates the development of tools and analysis that are 
capable of justifying these foundational investments.

Open data-sharing resources, as well as the principle of open data 
itself, can help to reduce the cost of conducting genetic research. They 
can also limit the number of conflict-of-interest problems that occur 
as academic medical centres increasingly partner with commercial 
activities. Although this infrastructure does not help to solve general-
ized funding issues, it does set a precedent for sharing data rather than 
keeping it proprietary. In doing so, it reduces the scope and impact of 
potential conflicts and helps to ensure that commercial relationships 
are based on open principles.

Future directions
Despite compelling examples of the use of genomics to support preci-
sion medicine, the core building blocks that will be necessary to scale 
up the field are still in a very primitive state. However, as the community 
works to improve these building blocks and link them up, transforma-
tions are beginning to occur. Clinicians, researchers, laboratories and 

vendors are working together to build the tools that will close the dis-
tance between each stakeholder. It is becoming easier to move, compare, 
apply and reproduce knowledge, data and samples. The basic infrastruc-
ture required to support a continuously learning health-care system has 
started to evolve spontaneously in many different areas. Furthermore, 
a cultural change is emerging as researchers, clinicians and patients  
embrace the open sharing of data to facilitate scientific advancement. 
Although it is unclear how long it will take to build an infrastructure 
that fully supports the widespread sharing and effective use of genomic 
and health data, the ultimate result will be a transformation of health 
care that allows continuous advances in medicine to occur within a 
clinical-care system that is less dependent on externally funded research 
endeavours. ■
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